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1 Variational inference

Approximate inference in the FC-HGP is based on the variational approximation
proposed in [I]. We provide here an overview of the inference algorithm.

As with standard variational approximations, we aim at finding a varia-
tional distribution ¢(f, g) that minimizes the Kullback-Leibler (KL) divergence
to the true posterior, KIL(¢(f, g)||p(f,g|y)). Assuming a factorized variational
distribution of the form ¢(f, g) = ¢(f) ¢(g), we can write
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Defining £(q) £ E,[logp(y,f,g)] — E4llog q(f)] — E,[log ¢(g)] and re-arranging
yields

L(q) = logp(y) — KL(q(f) q(g)Ip(f, gly))-

Since the KL divergence is always non-negative, it becomes clear that L£(q)
lower bounds the (log) marginal likelihood of the data, i.e. logp(y) > L(q).
Minimizing he KL divergence in then equivalent to maximizing £(q).

In its current form L£(g) depends on two T-dimensional variational distri-
butions: ¢(f) and ¢(g). We can obtain a simpler, tighter bound, by optimally
removing the dependency on ¢(f). According to the variational Bayesian theory,
the optimal distribution ¢*(f) is given by [2]
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where Z(q(g)) = [ el 98 logr(¥If:8) d& p(f) df is a normalization constant needed
to ensure that ¢*(f) integrates to one. Plugging ¢*(f) back into the bound L(q)



and performing some simplifications we obtain a marginalized variational lower
bound given by

L(q) =log Z(q(g)) — KL(q(g)|Ip(g))-

Restricting ¢(g) to be a multivariate normal distribution, such that ¢(g) =
N(glp,X), we have that
L(p,X) = 10g/ef/\f(g|u72) log p(ylf,g) 9 N (£07, K ;)df
— KL(N (glp, 2)[|NV (glrolr, Ky)), (2)

where we made the dependency of the lower bound £ on the variational param-
eters p and X explicit and, similarly to K¢, the matrix K, is used to denote
the covariance function kg({@¢—1,...,2¢—1}, {2} _1,...,x}_.}) evaluated between
every pair of training inputs with the relative flow information for the noise
process.

The first term in can be computed by noticing that
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where R is a diagonal matrix with elements [R]; = el#i=[¥li/2 and tr(X)
denotes the trace of X. Making use of the fact that

/ N(yIf,R)N (07, K ;) df = N (y|0r. K + R),

we obtain an analytical expression for the marginalized variational bound, given
by
1
L(p,X) =log N(y[0r,K; +R) — th(z)
— KLV (glp, Z)[INV (glrolr, Ky)), (4)

where the KL divergence between two multivariate normal distributions is given
by [3]
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By finding the parameters g and ¥ that maximize the bound in , we are
simultaneously finding the variational distribution A (g|u, X) that is closest to
the true posterior. Since the optimization of £(p,X) is non-linear, a conjugate
gradients procedure is used. It is important to note that the bound in can
also be used to optimize the hyper-parameters of covariance functions k¢ and



kg, thereby implementing type-II maximum likelihood for model selection. In
practice, in order to simplify this optimization problem and reduce the compu-
tational complexity, we follow the reparametrization procedure proposed in [I]
based on [4], which defines
1
rp=Kg(A- §IT 17 + polr
=K, +A)7 (5)

for some diagonal matrix A, thereby effectively reducing the number of param-
eters from T+ T(T +1)/2 to T.
Lastly, we can obtain an analytical expression for ¢*(f) by making use of

in (1)) to give
q"(f) <« N(y|f, R) N (f07, Ky)
= N(fKyo, Ky — K;(K; +R)'Kj), (6)

where we defined o £ (K; + R) "1y
To make predictions for a new unobserved time t,, we begin by making use
of (??) and (6) to compute the posterior distribution of f,

a(f.) = / p(f.16) 4" (F) df
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where a, £ k}, o and b, 2 ky..—kj, (K;+R) k.. Similarly, for the posterior
of g., following the reparametrization in , we have that

a(g.) = / p(g.1g) a(g) de
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where we made use of the Woodbury matrix identity. Finally, the predictive
distribution for an unobserved time t is given by

a(y.) = / N (Wl for ) a(f2) a(g2) df. dg.

_ /N(y*\a*,b* + e ) N (gales, du) dga. (7)



Although this distribution is not Gaussian, we can obtain analytical expressions
for its mean and variance, which are given by E,[y.] = a. and V [y.] = b, +
ec=td«/2 respectively.
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