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1 Variational inference

Approximate inference in the FC-HGP is based on the variational approximation
proposed in [1]. We provide here an overview of the inference algorithm.

As with standard variational approximations, we aim at finding a varia-
tional distribution q(f,g) that minimizes the Kullback-Leibler (KL) divergence
to the true posterior, KL(q(f,g)||p(f,g|y)). Assuming a factorized variational
distribution of the form q(f,g) = q(f) q(g), we can write

KL(q(f) q(g)||p(f,g|y)) = Eq

[
log

q(f) q(g)

p(f,g|y)

]
= Eq[log q(f)] + Eq[log q(g)]

− Eq[log p(y, f,g)] + Eq[log p(y)]

Defining L(q) , Eq[log p(y, f,g)] − Eq[log q(f)] − Eq[log q(g)] and re-arranging
yields

L(q) = log p(y)−KL(q(f) q(g)||p(f,g|y)).

Since the KL divergence is always non-negative, it becomes clear that L(q)
lower bounds the (log) marginal likelihood of the data, i.e. log p(y) > L(q).
Minimizing he KL divergence in then equivalent to maximizing L(q).

In its current form L(q) depends on two T -dimensional variational distri-
butions: q(f) and q(g). We can obtain a simpler, tighter bound, by optimally
removing the dependency on q(f). According to the variational Bayesian theory,
the optimal distribution q∗(f) is given by [2]

q∗(f) = arg max
q(f)
L(q) =

p(f)

Z(q(g))
e
∫
q(g) log p(y|f,g) dg, (1)

where Z(q(g)) =
∫
e
∫
q(g) log p(y|f,g) dg p(f) df is a normalization constant needed

to ensure that q∗(f) integrates to one. Plugging q∗(f) back into the bound L(q)
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and performing some simplifications we obtain a marginalized variational lower
bound given by

L(q) = logZ(q(g))−KL(q(g)||p(g)).

Restricting q(g) to be a multivariate normal distribution, such that q(g) =
N (g|µ,Σ), we have that

L(µ,Σ) = log

∫
e
∫
N (g|µ,Σ) log p(y|f,g) dgN (f|0T ,Kf )df

−KL(N (g|µ,Σ)||N (g|µ01T ,Kg)), (2)

where we made the dependency of the lower bound L on the variational param-
eters µ and Σ explicit and, similarly to Kf , the matrix Kg is used to denote
the covariance function kg({xt−1, ..., xt−L}, {x′t−1, ..., x′t−L}) evaluated between
every pair of training inputs with the relative flow information for the noise
process.

The first term in (2) can be computed by noticing that∫
N (g|µ,Σ) log p(y|f,g) dg = logN (y|f,R)− 1

4
tr(Σ), (3)

where R is a diagonal matrix with elements [R]ii = e[µ]i−[Σ]ii/2 and tr(Σ)
denotes the trace of Σ. Making use of the fact that∫

N (y|f,R)N (f|0T ,Kf ) df = N (y|0T ,Kf + R),

we obtain an analytical expression for the marginalized variational bound, given
by

L(µ,Σ) = logN (y|0T ,Kf + R)− 1

4
tr(Σ)

−KL(N (g|µ,Σ)||N (g|µ01T ,Kg)), (4)

where the KL divergence between two multivariate normal distributions is given
by [3]

KL(N (g|µ,Σ)||N (g|µ01T ,Kg)) =
1

2
log
|Kg|
|Σ−1|

+
1

2
tr(K−1g Σ) +

1

2
(µ01T − µ)TK−1g (µ01T − µ).

By finding the parameters µ and Σ that maximize the bound in (4), we are
simultaneously finding the variational distribution N (g|µ,Σ) that is closest to
the true posterior. Since the optimization of L(µ,Σ) is non-linear, a conjugate
gradients procedure is used. It is important to note that the bound in (4) can
also be used to optimize the hyper-parameters of covariance functions kf and
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kg, thereby implementing type-II maximum likelihood for model selection. In
practice, in order to simplify this optimization problem and reduce the compu-
tational complexity, we follow the reparametrization procedure proposed in [1]
based on [4], which defines

µ = Kg

(
Λ− 1

2
IT

)
1T + µ01T

Σ = (K−1g + Λ)−1, (5)

for some diagonal matrix Λ, thereby effectively reducing the number of param-
eters from T + T (T + 1)/2 to T .

Lastly, we can obtain an analytical expression for q∗(f) by making use of (3)
in (1) to give

q∗(f) ∝ N (y|f,R)N (f|0T ,Kf )

= N (f|Kfα,Kf −Kf (Kf + R)−1Kf ), (6)

where we defined α , (Kf + R)−1y.
To make predictions for a new unobserved time t∗, we begin by making use

of (??) and (6) to compute the posterior distribution of f∗

q(f∗) =

∫
p(f∗|f) q∗(f) df

=

∫
N (f∗|kT

f∗K
−1
f f, kf∗∗ − kT

f∗K
−1
f kf∗)

N (f|Kfα,Kf −Kf (Kf + R)−1Kf ) df

= N (f∗|a∗, b∗),

where a∗ , kT
f∗α and b∗ , kf∗∗−kT

f∗(Kf +R)−1kf∗. Similarly, for the posterior
of g∗, following the reparametrization in (5), we have that

q(g∗) =

∫
p(g∗|g) q(g) dg

=

∫
N (g∗|kT

g∗K
−1
g g, kg∗∗ − kT

g∗K
−1
g kg∗)

N (g|Kg(Λ− 1
2IT )1T + µ01T , (K

−1
g + Λ)−1) dg

= N (g∗|c∗, d∗),

with c∗ , kT
g∗(Λ − 1

2IT )1T + µ0 and d∗ , kg∗∗ − kT
g∗(Kg + Λ−1)−1kg∗, and

where we made use of the Woodbury matrix identity. Finally, the predictive
distribution for an unobserved time t is given by

q(y∗) =

∫
N (y∗|f∗, eg∗) q(f∗) q(g∗) df∗ dg∗

=

∫
N (y∗|a∗, b∗ + eg∗)N (g∗|c∗, d∗) dg∗. (7)
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Although this distribution is not Gaussian, we can obtain analytical expressions
for its mean and variance, which are given by Eq[y∗] = a∗ and Vq[y∗] = b∗ +
ec∗+d∗/2, respectively.
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