Learning Supervised Topic Models from Crowds
AUTHORS:
Filipe Rodrigues (fmpr [at] dei.uc.pt)
Mariana Lourenço
Bernardete Ribeiro
Francisco Câmara Pereira
ABSTRACT:
The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this paper, we propose a supervised topic model that accounts for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state of the art approaches.
CONFERENCE:
The Third AAAI Conference on Human Computation and Crowdsourcing (HCOMP) 2015
DOWNLOAD:
SUPPLEMENTARY MATERIAL:
DATASETS AND SOURCE CODE:
Source code and datasets used are available here.